How can we solve the problem of confounding?

Stratification by a confounder Multivariable / multiple analysis

Mantel-Haenszel odds ratio

Stratification by confounding factor

- After stratification by confounding factor, common OR, OR_{MH}, among all strata should be calculated.
- □ Assumption: there is a common OR among all strata → there is no significant difference in ORs among all strata by homogeneity test.

An example of Mantel-Haenszel estimation 1

Calculate the common OR among all strata

smoking	Case	Control	
+ -	a _i C _i	b _i d _i	M _{1i} M _{0i}
Total	N _{1i}	N _{0i}	T _i

 $OR_c = \Sigma W_i OR_i / \Sigma w_i$

i: "i" th stratum, W_i : weight of "i" th stratum

Practice 1 Mantel-Haenszel odds ratio(1)

- Open the "tsunagi_v]" data by excel
 Please refer Appendix] for the explanation of each variable.
- 2. Import this data set by your statistical software (STATA, R, and SPSS ...)

Mantel-Haenszel odds ratio(2)

3. Suppose, you want to examine the cancer risk by habitual alcohol drinking.

Please create a contingency table of cancer and alcohol drinking.

STATA command: tab alc cancer, row

Please calculate an odds ratio.

STATA command: cc cancer alc or cs cancer alc, or

Same OR but 95%CI is slightly different

Case-control study

. cc cancer alc				Proportion	
	Exposed	Unexposed	Total	Exposed	
Cases Controls	79 316	77 738	156 1054	0.5064 0.2998	
Total	395	815	1210	0.3264	
	Point	estimate	[95% Conf.	Interval]	
Odds ratio	2.3	96104	1.678901	3.416628	(exact)
Attr. frac. ex. Attr. frac. pop	. 58	26558 150629	.4043721	.7073138	(exact)
		chi2(1) =	26.38 Pr>chi	2 = 0.0000	

Cohort study

. cs cancer alc, o	or				
	alc Exposed	Unexposed	Total		
Cases Noncases	79 316	77 738	156 1054		
Total	395	815	1210		
Risk	. 2	.0944785	.1289256		
	Point	estimate	[95% Conf.	Interval]	
Risk difference	.10)55215	.0612577	.1497852	
Risk ratio	2.1	16883	1.584051	2.828946	
Attr. frac. ex.	. 5276074		.3687071	.6465115	
Attr. frac. pop	.2671858				
Odds ratio	2.3	396104	1.706524	3.364381	(Cornfield)
		chi2(1) =	26.38 Pr>chi	2 = 0.0000	

Mantel-Haenszel odds ratio(3)

4. Since we know that cancer risk increases with age, you may want to confirm the association between alcohol drinking and cancer risk by age group (<60, 60-69, ≥ 70).</p>

Please create contingency tables of cancer
STATA : by age_gp, sort: tab alc cancer, row

Please calculate odds ratios for each age group.

An example of Mantel-Haenszel estimation 1

	age	alcohol	Case	Control	OR
1	<60	+	13	129	1.54
		-	14	214	1 (ref)
2	60-69	+	32	105	3.95
		-	19	246	1 (ref)
3	≥70	+	34	82	2.62
		-	44	278	1 (ref)
Total		+	79	316	2.40
		-	77	738	1

Mantel-Haenszel odds ratio(4)

- 5. Is there significant difference in the odds ratio among age groups?
- 6. Mantel-Haenszel test: homogeneity test

STATA : cc cancer alc, by(age_gp)

Mantel-Haenszel odds ratio(5)

You can also calculate OR_{MH} by yourself.

 $OR_{MH} = \Sigma(a_i^*d_i/T_i) / \Sigma(b_i^*c_i/T_i)$

 $OR_{MH} = \frac{(13*214/370) + (32*246/402) + (34*278/438)}{(129*14/370) + (105*19/402) + (82*44/438)}$ = 2.69

Practice 2

 Using the "tsunagi_v]" data set, please examine the association between habitual alcohol drinking and cancer risk by sex stratification.

. cc car	ncer alc, b	y(male)				
	male	OR	[95% Conf.	Interval]	M-H Weight	
	0 1	.9455128 1.992308	.3977241 1.179265	2.01076 3.441301	7.399209 11.52993	(exact) (exact)
M-H	Crude combined	2.396104 1.583126	1.678901 1.061639	3.416628 2.360773		(exact)
Test of	homogeneit	у (м-н)	chi2(1) =	2.68 Pr>ch	i2 = 0.1014	
		Test that co	mbined OR = 1 Mantel-Haens	: zel chi2(1) = Pr>chi2 =	= 4.86 = 0.0276	

Q1. Is this OR_{MH} statistically significant? Q2. Is it OK to report OR_{MH} when the homogeneity test is statistically significant?

How can we solve the problem of confounding?

Stratification by a confounder Multivariable / multiple analysis

LOGISTIC REGRESSION ANALYSIS

Practice **3** Multivariable analysis

 Let's see the association between habitual alcohol drinking and cancer risk by logistic regression model.

STATA : logistic cancer alc or logit cancer alc, or

 Please examine this association adjusting for the effects of age and sex.

STATA : logistic cancer alc male age

. logistic car	ncer alc male	age				
Logistic regre Log likelihood	Number of obs = LR chi2(3) = Prob > chi2 = Pseudo R2 =		= 1210 = 67.45 = 0.0000 = 0.0725			
cancer	Odds Ratio	Std. Err.	z	P> Z	[95% Con	f. Interval]
alc male age	1.877452 2.099375 1.041058	.3864541 .4306218 .0093757	3.06 3.62 4.47	0.002 0.000 0.000	1.254174 1.404405 1.022844	2.810476 3.138251 1.059597

STATA : logistic cancer alc male age_gp

. logistic cancer alc male age_gp								
Logistic regression Log likelihood = -431.86621					Number of obs = LR chi2(3) = Prob > chi2 = Pseudo R2 =			
cancer	Odds Ratio	Std. Err.	Z	P> z	[95% Cor	f. Interval]		
alc male age_gp	1.825007 2.198312 1.669985	.3736455 .4481714 .1951521	2.94 3.86 4.39	0.003 0.000 0.000	1.221779 1.474193 1.328136	2.726067 3.278117 2.099824		

STATA : xi: logistic cancer alc male(i.age_gp

Categorical variable (>2 categories)

. xi: logistic i.age_gp	cancer alc n _Iage_gp_	nale i.age_g _1-3	p (naturall	y coded;	_Iage_gp_1 o	omitted)
Logistic regre Log likelihood	ession = -431.81689)		Numbe LR ch Prob Pseud	r of obs = i2(4) = > chi2 = o R2 =	1210 66.47 0.0000 0.0715
cancer	Odds Ratio	Std. Err.	Z	P> Z	[95% Conf.	Interval]
alc male _Iage_gp_2 _Iage_gp_3	1.825179 2.192979 1.792761 2.84385	.3735059 .4473008 .4573496 .6937492	2.94 3.85 2.29 4.28	0.003 0.000 0.022 0.000	1.222123 1.470332 1.087359 1.763025	2.725812 3.270798 2.955776 4.587276

If there is no linear trend of the cancer risk by age, it would be better to use categorical variable for age.

REGRESSION ANALYSIS

Practice 4 Regression analysis (1)

- Suppose, you want to know predictors of systolic blood pressure in the subjects of "tsunagi_v]" data.
- What do you have to check first?

Distribution of systolic blood pressure

Log-transformation may work…

STATA : gene lsbp=log(sbp) hist lsbp

Practice 4 Regression analysis (2)

- Age is one of the predictors of systolic blood pressure.
- Please conduct regression analysis using "age" as a explanatory variable.

STATA : reg lsbp age

. reg 1sbp age	<u>a</u>					
Source	55	df	MS		Number of obs	= 1210
Model Residual	2.84842138 37.4400935	1 2. 1208 .0	84842138 30993455		Prob > F R-squared	= 0.0000 = 0.0707 = 0.0600
Total	40.2885149	1209 .0	33323834		Root MSE	= 0.0099 = .17605
lsbp	coef.	std. Err	. t	P> t	[95% Conf.	Interval]
age _cons	.0044274 4.531922	.0004618 .0301251	9.59 150.44	0.000 0.000	.0035213 4.472819	.0053334 4.591026

SBP= 4.531922 + **0.0044274***age

Practice 4 Regression analysis (3)

Please transform age variable into 10-year age group.

STATA : gene age10=floor(age/10)

Let's see the association between age and systolic blood pressure using this variable (age10).
 What do you expect?

. reg lsbp age	210					
Source	55	df	MS		Number of obs	= 1210
Model Residual	2.8196114 37.4689035	1 1208 .	2.8196114 031017304		F(1, 1208) Prob > F R-squared	= 90.90 = 0.0000 = 0.0700 = 0.0602
Total	40.2885149	1209 .	033323834		Root MSE	= .17612
lsbp	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
age10 _cons	.0431853 4.557933	.004529 .027	9.53 6 165.14	0.000 0.000	.0342989 4.503784	.0520717 4.612083

SBP= 4.557933 + 0.0431853*age(10)

cf. SBP= 4.531922 + **0.0044274***age

Practice 4 Regression analysis (4)

- Suppose, hemoglobin level may be one of the predictors of systolic blood pressure.
- Please pick-up other potential predictors (other than hemoglobin) for systolic blood pressure in this data set based on your Knowledge.

And, conduct regression analysis.

